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Introduction

Factor analysis has proved to be a popular mode of data analysis in

the behavioral sciences. However, what is often referred to as factor

analysis is actually used on the component model rather than the factor

model and should be called component analysis.- Certainly, of all the

methods currently available, the most widely used is the principal compo-

nents analysis followed by the varimax rotation. It remains popular not

because it is based on a method or model which is universally -appropriate,

but because it is simple, because computer programs are readily available

and because component scores are easily calculated. Yet, in spite of the

fact that component scores are easily found, there is a history of them

being found incorrectly.

Good discussions of the measurement of components from the rotated

ncipal components solution have been written by such authors as

Harman (1967), Kaiser (1962), and Glass and Maguire (1966). Still, many

users of the model have theiriwn ideas of how these scores should be ob-

tained. Their, methods have great intuitive appeal and appear reasonable

and obvious. One of the most popular of these methods uses factor loadings

as weights of the standardized variables and the resulting linear combinations

are called "factor scores." Another method, claimed to yield approximate

factor scores, sums those standardized variables with "high" loadings on a

particular component. Thus, weights of zero and one are used in the-linear

composite.

Both methods are technically incorrect - However, detailed discussion

a

per

e thematical reasons why the methods are Incorrect may not be

sive to the user who finds them intuitively appealing. Yet these users

need td be convinced.- _ForFor this

supplemented by a series o

incorrect measurement of components.

on, tbe theoretical development f this

pies: showing the results of an
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Theoretical development

If n variables are observed for each of N subjects, the component model,

stated in matrix form, is given by

(1) Z = AT FT p

where Z is the nnli matrix pf standardized scores, AT is the complete nxn

pattern matrix and F
T

is a nxN matrix of component scores. If AT represents

a complete principal components solution, then

(2)

However, the user of the component model usually wishes to retain only the

Largest components, say the first m. Thus we work with only the first m

columns of A
T

and the first m rows of F
T , which we might denote as A and F

respectively. Since A is at nxm matrix and has no inverse, we cannot use

equation (2) to solve for component scores. Still, a simple solution for

F exists:

F
T

= AT
-1

Z

(3) -1 =2F= (A'A) AZ=D A tZ

where A'A 2 is a diagonal matrix of the m largest elgenvalues of the

correlation matrix. It is readily proved that the covariance matrix, SF,

of the components equals the identity matrix and the matrix of variable by

component correlations, RZF' equals the pattern matrix A. Also, since the

inverted eigenvalues scale the rows of A', the factor 1- dings become the

effective weights in the linear combinations which produce the component

scores. Thus, the first method mentioned in the introduction is correct

but for a scaling constant and the second method, using weights of zero and

one, becomes, an approximation which Schweiker (1967) has argued possesses

some desirable properties.

However, if an orthogonal rotation is performed which results in a new



matrix of loadings, say B, we now have new set of component scores, G,

which can be shown to satisfy the following equation:

(4) G (BIB )1 B'Z

As before, the covariance matrix of these component scores, denoted SG,

equals the identity matrix and the matrix of variable by component correlations,

11ZG' equals the rotated matrix of loadings B.

A comparison of equations (3) and (4) indicates a great deal of simi-

larity and one important difference. It will be observed that, while A'A

is a diagonal matrix, the product B'B is not Hence, the weights required to

calculate component scores are no longer simply scsaings of the loadings in

the rows of B'. If we persist in the use of the rows of B' as weighting

vectors, we will find scores which do not reflect the properties of the

solution.

We can now formalize method one relative to an orthogonally rotated

principal components solution. Using loadings as weights, we find a set of

composite scores, denoted H, given by

(5) H B' Z.

The matrix H will not equal the correct scores G, nor will it possess proper-

ties of the solution given by B.

Two matrices were utilized to determine the extent to which the in-

correct component scores do not reflect the solution. The first matrix,
RzHI

contains the variable by component correlations. If H were correct, and

B would be equal. The second is the correlation matrix, of the indorrect

component sdores. The components should be uncorrelated, so should equal

the identity-matrfOc.



Starting with equation (5) we can easily derive S11, the matrix of

component covariances :

so
(6)

H

B1MB

1

N ZZ" =R

B' B B.

-4-

It can further be derived that this expression will not reduce down to a

diagonal matrix.

To find R we need the variances of H, which reside in the diagonal

of SB. Denoting a diagonal matrix of these variances an D find
H-

(7)

H'D-
1 2

-H

ZZ'B D;11/2

B BD
2

which will not in general equal the matrix B of loadings.

Finally,

(8) -1 2 _ -1/2
D

H SH
DH

Again, should be an identity matrix, but can be shown not to

Before studying the three matrices developed above, It is ul to

consider incorrect component scores of the second variety. If, rather than

using elements of B as weights, we simply sum the standarized scores of those

variables with "large" loadings, we are effectively using a binary matrix of

weights. It was arbitrarily decided to assign a weight of

loadings whose absolute value was greater than .5 and a zero to all loadings



.5 or less in absolute value. Denote by C this binary analogue to B.

Then component scores

(9)

have a covariance matrix

(10)

and a correlation matrix

11)

K=C' Z

= C'

D71/2 S D -1/2
-K K K

where D
K

is a diagonal matrix of component score variances. Also,

matrix of variable by component correlations is given by

(12) R =ROD-1 2

With the mathematics developed, it remains to study these matrices

for each procedure. The matrices were calculated for each of a variety

of examples and compared to the form which they would take if they were

an adequate reflection of their respective solutions.

Illustrations and Results

Several correlation matrices were taken from books on factor analysis

and multivariate analysis. Each matrix ubmitted to a. principal com-

ponents decomposition and those vectors whose roots were greater than 1.0

were then rotated according to the normalized varimax criterion. Following

this, matrices R R_
ZK

R and among others, were calculated. A

clear pattern resulted and five examples best illustrating this pattern

were chosen and are reported in Tables la-le below. Table if contains the

only example in which the pattern was not obvious.

The pattern exhibited is clear. Components supkosedly orthogonal to

each other often came out highly correlated (e.g. .86 In Table 1d) .



TABLE 1
Illustrative Examples of Var_ ble-bY-Component and

Component-by-Component Correlation.Matties, Using Correct Components
(G), Components Using Loadingsdasqieights (H) and

Components UsiwEinary.Weit
Right Physical Variables

RZH
.93 .63

.93 .58

.1 .55

.92 .69

.57 .91

.48 .84

.42 .89

.52 .78

9.740
1 .00

from Harman

R
ZG

[9°

.93

.92

.18

.90

.25

.11

.25

R

1.00
0. 00

(1967,,p.80)

= B

.26

.20

.16

.23

.89

.84

.84

.75

I

0.1
1.00

__
94

.95

.93

.93

.44

.37

.30

.40

R241(

.46

.41

.38

.43

.91

.86

.84

.89

9.44
1.99

1.00
9.44
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lb: Eight Variables on 100 Rectangles from Cooley and Lohnes (1971, p.134)

RZH
.95 .55
.45 .90
.96 .56

.46 .89

. 99 .82

. 95 .93

. 82 .99

. 99 .70

1111

1.00 0.7/
0.79 1.00

PIZG

.99

.99

.19

.91

.77

.55

.97

B

.96 1

99
.56
.89
.82

.99

.79

lc: A 9 Variable Example from Horst (1965, p.122)

RZH
B

ZH ZG

.91 .21 .53 92 .99 .18

.92 .23 .56 .91 .02 .22

-39 .53 .89 .21 .15

.27 .85 .40 .07 .83 .19

.18 .87 .26 .03 .89 .94

.25 .87 .31

5 .33 .84

.09 .88 .07

[_.

.15 .11 .85
.45 .25 .84 .16 .91 .88
.53 .49 .89 .26 .29 .71

1._

1.99 9.49 9.71
0.40-1.09 9.51
9.71 9.51 1.99

R = 1
GG

1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 o.99

R
ZK --

LIA :44
.94 _ .47

.48

.99

.96

.84

.99

L
01.00

.74

. 93

.

.91
. 18

.11

. 17

. 33

. 33

.4o

RZK

.75

.89

.98

.62

0.74
1.01.1

.99 .38

.11 .41

.27 .38

.86 .31

.89 .19

.89 .23

.22 .86

.14 .86

.35 .81

i.00 0.17 0.42
0.17 1.00 0.28
0.42 0.28 1.



hi: k Contrivedrntri 10 Variable Example from Mulaik (1972,.p.228)

R
ZA ZG Z1(

R = B R

.59
154

.70

.73

.39

.52

.86

.90

.86

.80

.89

.76

.85

.65

.58

.50

.50

.69

.61

.83

.75-

.53

.58

.86

.73

.77

.53

.61

.75

.81

716
.05

.44

.44

_03
.20

.94

.87

.76

_.51

.84

.81

.79

.19

.35

.11

.08

.34

.12

.54

.34

.19

.06

.74

.75

.81

.10

.10

.45

.45

.50

.37

.63

.66

.34

.45

.89

.91

.88

. .8o

RHH RGG =I
1.00 0.83 0.84- 1.00 o.00 0.00
0.83 1.00 o.86 0.00 1.00 0.00
0.84 0.86 1.00 0.00

...
0.00 1.00

L1.00

0.68
0.58

.90

.79

.86

.56]

.40

.39

.55 .86

.49 .80

.43 .83

.41 -.36

.61 .42

.51 .61,

.82 .64J

RKK
0.68 0.58
1.00 0.59
0.59 1.00

Contrived 10 Variable Example from Fruchter (1954,p.36)

R
Z1-1

.48 .91 .78

.48 .80 .89

.33 .34 .88

.91 .79 ,47

.81 .90 .46

.36 .88 .31

.90 .46 .81

.79 .47 .92

.87 .32 .36

.96 .84 .85

RHH
r-

:g;
-.01
.83

.63

.05

.79

.59

.99

.79

R
G
= B R

ZIC

.58.81 .51 .91 .79
.51 .79 .91

.03 .99 .36 .33 .89

.56 -.01 .90 .79 .46

.77 -.02 .81 .91 .46

.99 -.03 .36 .89 .33
-.02 .61 .90 .46 .79
-.01 .81 .81 .46 .91
-.05 .01 .86 .33 .33
.48. .49 .97 .8b .84

R
GG
= I

Riac
1.00 0.71 0.71 1.00 0.00 0.00 1.00 0.72 0.72
0.71 1.00 0.69 0.00 1.00 0.00 0.72 1.00 C.69
0.71 -.69 1.00 0.00 0.00 1.00 0.72 0.69 1.00

Ten Variables Related to Educational and occupational
Aspirations of 17 Year-Old Boys from VandeGeer (1971, p.165

-__
R
ZH RZG = B

R
IK

.10.10 .45 -.47 -.16 .58 -.46 .10 .58 -.11

.46 .65 -.10 .23 .61 -.08 .35 .70 -10

.49 .54 .22 .35 .43 .24 .35 .35 -.09

.58 .42 .44 .55 .19 .47 .67 .26 .04

.73 .50 -.15 .72 .19 -.13 .75 ,.35 -.20
. 34 .15 -.77 .37 -.03 -.76 .21 .13 -1.00
.56 .80 .08 .27 .76 .10 .44 .78 -.08
.53 .82 .04 .21 .81 .06 .40 .8o -.07
.83 .56 -.13 .81 .22 -.10 .84 .38 -.28
.81 .56 -.06 .78 .23 .03 .81 .38 -.20

R = I

1.00 0.78 -.05
0.78 1.00 -.04
0 -.04 1.00

1.00 0.00 O.

0.00 1.00 0.00
[900 0.00 1.00

RKK
1.00 0.45 -.21
0.45- 1.00 -.13
-.21 -.13 1.00



In addition, factor loadings which are matrix By the rotated

principal components structure, are often moderate e in RZH and

R .g., b .12 while = .61 and rr2
Z K

.51 in
Ta

ble ld Thus,
9 2 9 2

the researcher who interprets and names components finds that his scores.

H or K, have a completely different meaning than he anticipates. Any use

of these scores in further malysis will result in a serious distortion

of conclusions. Even in Table le, where the distortion was minimal, we

find r to be .78 and one factor loading of .23 resulting LI rzH and

.56 and .38 respectively.

Conclusions

The mathematics and illustrations lead us to the conclusion that factor

loadings, used directly or as the b ais of binary values are not appropriate

as weights to produce component scores from a rotated solution. But

intuitively they may still make sense. In an attempt to dispatch this idea,

let us draw an.anology. Linear composites are also used as the basis of

prediction in multiple regression. However, no person at all familiar with

regression an sis would use predictor-criterion correlations as regression

weights. Why then should the use of correlations as weights be considered

intuitively appealing in component analysis?
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